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What I call a low on a C*-algebra A was usually referred to
as a strongly continuous one-parameter automorphism
group of A until some time ago. This topic was extensively stud-
ied in 1970’s and perhaps in 1980’s after the study of (everywhere-
defined and so bounded) derivations. At that time the focus was
mainly on generators and densely-defined derivations with models
from statistical mechanics in mind. A typical question we asked
was ”Characterize when a densely-defined derivation generates a
flow” . Another question was related to KMS states (or equilibrium
states) asking, e.g., whether they exist uniquely or not. But I sup-
pose this was a bit too vague. The only result worth-mentioning
is the uniqueness of KMS states for flows corresponding to the
one-dimensional lattice system (or bounded surface energy).

However, clever people soon deserted this field because I think no
new results were coming as expected after a general theory (mainly
due to Bratteli and Robinson) and some specific results pertaining
to AF algebras (mainly due to Sakai) had been established.

See Bratteli-Robinson’s book (1979,1981) and Sakai’s book (1991)
for all these up to around 1980. (Sakai’s book is relatively new,
but I suppose the main body of the book was written long before.)
See also Bratteli’s lecture note ” Derivations, dissipations and group
actions on C*-algebras” (1986) for some progress made after.



1 Intfoduction

By a flow a on a C*-algebra A we mean a continuous homomor-
phism o : R — Aut(A), where Aut(A) is the automorphism group
of A equipped with the topology of point-wise convergence.

By an a-cocycle u we mean that u is a continuous map from R
into the unitary group of the multiplier algebra M (A) of A with
the strict topology such that usas(us) = ugyy, s,t € R. If wis an
a-cocycle then t — Ad wa is a flow, called a cocycle perturbation
of a.

Our far-reaching goal would be classifying the flows up to cocy-
cle perturbations. Since we are not anywhere near this goal, I will
first review, as an introduction, two extreme cases, almost uni-
formly continuous flows and Rohlin flows. Although Rohlin
flows form an interesting subject (and may be the only class of
flows susceptible of classification) we will not discuss here; instead
focus on flows which are more interesting from a physical point of
view. Namely we will discuss the flows which are approximately
inner, asymptotically inner, quasi-diagonal, or pseudo-
diagonal. If the C*-algebra is quasi-diagonal, pseudo-diagonality

is the weakest condition among those and implies the existence of
KMS states.



We then briefly discuss cocycles; norm-continuous cocycles are
describable in a sense and general cocycles can be approximated
by norm-continuous one, which 18, I think, very much different
from the case of von Neumann algebras. We note that the above
four conditions are all invariant under cocycle perturbations as
expected.

The obvious invariant for cocycle conjugate classes of flows are
crossed products with dual flows (action), due to Takesaki and
Takai. We note that the flows we are interested in have KMS
states (if the C*-algebra is unital and finite) and that the traces
of the crossed product is described in terms of KMS states (under
a mild assumption). The ideal structure of the crossed product
could be obtained by studying the ground state (and ceiling state)
representations. We will try to describe such crossed products and
then conclude the talk by proposing the problem of classifying such
crossed products.



2 Flows; extreme cases

Let A be a C*-algebra. We denote by M (A) the multiplier algebra
of A. The strict topology on M(A) is determined by z — ||az||
and z — ||zal| with @ € A. If A is unital then M(A) = A and
the strict topology is equivalent to the norm topology.

We call @ a flow on A if o is a one-parameter automorphism
group of A such that ¢ — ay(x) is continuous for all z € A

Definition 2.1 We call a inner if there is a unitary flow u
in M(A) such that

Q;(I) = Ad’u,g(ﬂ'}) = utxu;‘, x €A

and t — w; is continuous in the strict topology.

We call o universally weakly inner if there is a unitary
flowU in A™* such that o, = AdU,|A and t — Us 1s continuous
in the weak* topology.

We call oo uniformly continuous if ||oz—id|| — 0 ast — 0.

We call o almost uniformly continuous iof for any -
invariant ideal I of A the induced flow on A/I has a non-zero
invariant hereditary C*-subalgebra on which it is uniformly
continuous. (Then every ideal of A is a-invariant. )



If & is uniformly continuous then the generator

oy — id
g = lim —
t—0 T

1s a bounded operator on A and satisfies
Sl =8,[x"), me A

and
da(zy) = 20u(y) + 8a(z)y, z,y € A.

A linear operator satistying these two conditions is called a deriva-
tion and is automatically bounded. An example of derivation is
an inner derivation = — ad ih(z) = [ih, z] with h € M (A I
A is simple then all derivations are inner (Sakai).

Definition 2.2 A (non-degenerate) representation of A is
a-covariant if there is a unitary flow U on Hy such that t —
Uy is weakly continuous and

Tay(z) = Urr(z)U}, z€ A, teR.

There are always covariant representations (since representa-
tions of the crossed product give such representations). But it
1s & non-trivial question to ask whether there is a covariant irre-

ducible (or type II or type III factor) representation (in case A is
simple).



Theorem 2.3 Consider the following conditions on «.
1. a s almost uniformly continuous.
2. a 18 universally weakly inner.

3. o on A* is strongly continuous, i.e., ||poy — ¢|| — 0 as
t — 0 for ¢ € A*.

4. Any irreducible representation of A is a-covariant.

5. There is a net (h,) in Ay, such that Adith,(z) — a(x)
uniformly in t on every bounded set of R and for all x €
A and simultaneously e®'™ weakly* converges to U, in A*™*
uniformly in t on every bounded set of R, where U 1is a
unitary flow in A** as in (2).

6. o is inner.
7. a s uniformly continuous.

Then (1)-(5) are equivalent. Moreover if A is simple then
(1)-(6) are equivalent. If A is simple and unital all conditions
are equivalent.

Note: (2)<(5) from Brown-Elliott.



The proofs are not trivial, but the above flows are kind of trivial.
One reason for that is they have trivial Borchers spectrum. Let

K'(R) = {f € L'(R) | supp(f) is compgct}.

Definition 2.4 For f € K'(R) and z € A define ay: A — A
by
as(@) = [ fOwa)ds.

For x € A define the a-spectrum of = by
Spa(z) = the kernel of {f € K'(R) | af(z) = 0}.
For a closed subset of F of R let
A¥F)={z € A | Sp,(z) C F}.

The Arveson spectrum Sp(a) of a is the smallest closed
subset F' satisfying A*(F') = A. Note that Sp(a) = —Sp(a).

Definition 2.5 The Connes spectrum Rg(a) (resp. the
Borchers spectrum Rp(«)) is

()Sp(a|B),
B

where B runs over all the non-zero a-invariant hereditary C*-
subalgebras of A (resp. those which generate essential ideals

of A).



Remark 2.6 When A is separable, the Connes spectrum is
also given by

Ro(a) =) )Sp(Adu(a ® id)|I ® K)
I

where I Tuns over the a-invariant ideals of A and u runs over
the a ® id-cocycles in M(I @ K).

A similar equality holds for the Borchers spectrum Rp(a)
by inserting “essential” in front of ideals.

Remark 2.7 Ro(a) is a closed subgroup of R, Rp(a) is a
closed subset such that nRp(a) C Rp(a) for all n € Z, and
RB(Od) = Rc(a).

Both Re(a) and Rp(a) are invariant under cocycle pertur-
bations.

If A is a-prime then Re(a) = Rp(a). |
The crossed product A X, R is prime if and only if A is
a-prime and Ro(a) = R. (Olesen-Pedersen)

Proposition 2.8 If a is almost uniformly continuous then
Rp(a) = {0}.

Proof. If o is uniformly continuous then Sp(a) is bounded. If o is
almost uniformly continuous then one finds an a-invariant heredi-
tary C*-subalgebra B of A such that «|B is uniformly continuous
and B generates an essential ideal of A. Since Rp(a) C Sp(a|B),
one deduces Rp(a) = 0.



We often derive the condition R¢(a) = R from a stronger con-
dition:

Definition 2.9 We call o profound if for each p € R there
is a sequence (z,) i A such that ||z,|| = 1,

Spa(zn) C (p—1/n,p+1/n),
llzn, ]| = 0, z € A4,

and
|2nz|| = 0=>2=0, =€ A.

Proposition 2.10 If o is profound then Reo(a) = R.

Proof. Let B be a non-zero a-invariant hereditary C*-subalgebra.
Let e € B, be such that Sp,(e) C (—e¢,€). Let (2,) be as in the
above definition. Then ez,e # 0 for all large n. Hence Sp(a|B) N
(p — €,p+¢€) # 0. Thus Sp(a|B) = R.

Besides the Connes and Borchers spectra of o we also have other
similar invariants: the von Neumann algebra versions of the in-
duced flow in an a-covariant tracial representation if there is such.



Thus almost uniformly continuous flows locate at one end of the
gamut of flows. At the other end there are flows of the following
kind:

Definition 2.11 We call o Rohlin if for any finite subset F
of A, p e R, and € > 0 there is a unitary u € M(A) such that

|| (u) — ePlul| <€ te[-1,1],
and

lfw, z]l| <e, z€F

This says that the central a-cocycle t — €' is trivial, i.e., can
be approximated by a sequence of coboundaries ¢t — uoy(un)
with (u,) a central sequence of unitaries. This would entail that
any a-cocycle is trivial, which is a strong property on a we can
explore.

10



Remark 2.12 There are Rohlin flows on the Cuntz algebra
O and so on Kirchberg algebras (because A = A @ Oy for
such A).

There are Rohlin flows on a unital simple AT algebra A of
real rank zero if the tracial state space T'(A) is finite-dimensional
and the rank of K1(A) is more than one.

There are no Rohlin flows on AF algebras. (If A has a unit
and has an a-invariant tracial state then the map U(A) 3 u —
iT(u*da(u)) € R induces a map from Ki(A) into R. If a is a
Rohlin flow then its range must be dense.)

Remark 2.13 If a is a Rohlin flow then Ro(a) = R. More-
over the strong Connes spectrum is R (or the ideals of the
crossed product A X, R are all invariant under the dual flow

&).
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3 Flows in between

Definition 3.1 We call a approximately inner if for any
finite subset F of A and € > 0 there is an h € A, such that
llow(z) — Ad et (z)|| < € fort € -1, 1].

We call o asymptotically inner (or continuously approzi-
mately inner) if there is a continuous function h : [0,00) — Asa
such that

a; = lim Ade®™C)(z), z € A.

t—00

Proposition 3.2 (Sakai) Let o be a flow on an AF algebra.
Then there is an incresing sequence (A,) of finite-dimensional
C*-subalgebras of A with dense union in A such that

D(da) 2 | An,

where 8, is the generator of a. Hence there is hy, € Agq such
that 64| A, = ad ihy|Ap.

It is tempting to conclude that Ad ethn — o, But this would
not follow automatically unless | J,, Ay is dense in the Banach *-
algebra D(8,) (or D(d,) is approximately finite-dimensional as a
Banach algebra). But in general it is not even if v is approximately
inner.
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If A is separable and « is approximately inner then there is a
sequence (h,) in A such that

Ad e (z) = oy(x)

uniformly in ¢ on every compact subset of R. This is equivalent to
saying that: the generator d, is the graph limit L of the sequence
ad 2h,, of inner derivations.

Here L is defined as follows: = € D(L) if there is a sequence
(z,) in A such that z, — z and adih,(z,) converges and then
L(z) = lim ad thy,(z,). However well you may choose the sequence
(hn)

D = {z € D(8,) | limadih,(z) = du(z)}

does not equal D(d,) nor contain all the elements of compact a-
spectra if Rg(a) # 0 and (A, ) has a faithful family of covariant
irreducible representations (the latter condition may follow from
the approximate innerness but I could not prove).

Maybe because of this we still do not have an intrinsic definition
of approximate innerness.

Remark 3.3 Apparently asymptotical innerness implies that
approximate 1mnerness.

All the known examples of approximately inner flows are
asymptotically inner (if the C*-algebra is separable).

13



Theorem 3.4 Let A be a separable C*-algebra. Then A 1is
antiliminary if and only if there is an asymptotically inner
flow a such that o is profound.

Proof. There is a sequence (m,) of irreducible representations of
A such that Ran(m,) N K = {0} and N, Ker(m,) = {0}. We
construct a flow a such that each m, is covariant under a. The
construction of « is based on the following lemma.

Lemma 3.5 Let A be a separable C*-algebra and let (a,) be a
dense sequence in A. Let (hy) be a sequence in Ay, such that

Ihall <1,
“[h‘mam]” S 2—nl|am”, m _<— n,
B Bl < 277, m < n.

Let H, = Y.3_, hi. Then Aden(z) converges as n — oo for
all x € A and defines a flow on A.

We choose a unit vector 7, from H,. We will construct a
central sequence (v,) in A such that mx(hn)m = 0 for & < n,
|7k (vm) || = 1 for k < m, and

Tk (hnm)e = 0, m < n, k <n,

and
Te(Rnvn)Mk = ATk (Vn)k, k < 1,

where () is a prescribed dense sequence in (0, 1). This will ensure
that « is profound.

14



Remark 3.6 In the above construction we can interpolate lin-
early between H, and H,., to show that o is asymptotically
inner. In this way we can construct a flow a on any separable
antiliminary C*-algebra A such that Reo(a) = R. But we do
not know if there are infinitely many cocycle conjugacy classes

of flows on A.

The condition of asymptotical innerness was introduced to solve
the following lifting problem.

Theorem 3.7 Let A be a C*-algebra and I an ideal of A. Let
B = A/I be the quotient of A by I with Q) the canonical map
of A onto B. If B is an asymptotically inner flow on B then
there 1s an asymptotically inner flow o on A such that

Qa = fQ

and «|l is universally weakly inner.

A natural question I have not solved yet is: If o is a flow on
A such that «|I is asymptotically inner and the induced flow on
B = A/I is asymptotically inner, then is o asymptotically inner?
The converse certainly holds.

15



Example 3.8 We consider a quantum spin system over
the d-dimensional lattice Z¢. We define, as an observable al-

gebra,
A=) A,
nezd
where A, = My (or any matriz algebra). We naturally have
the action v of Z% on A such that Yu(Am) = Amin. For each
finite subset A C Z¢ let A\ = Rnen An as a subalgebra of A.
Let ® be a function from the finite subsets of Z¢ into A,

such that ®(A) € Ay and v,(®(A)) = (A +n). We call ® an
interaction.

Define for each finite subset A C Z¢
H(A) =) a(X),
XCA

which is called a local Hamiltonian.
Suppose that

[elh=>"e* > JoX)| < oo
k=0

X30, | X|=k+1

for some A > 0. (In particular more restrictively suppose that
D is of finite range, i.e., ®(X) = 0 whenever the diameter of

X is greater than some constant.) Then a flow a® on A can
be defined by the limit

Ad et M) (z) of (z)
as A 1 Z%. The flow o® is asymptotically inner.

We will refer to this type of flows as quantum spin flows.

16



Let T' be a bounded operator on a Hilbert space H. T is called
quasi-diagonal if there is an increasing sequence (Ey) of finite-
rank projections on H such that

E, —1,

and
I[En, T]|| — 0.

If T'is self-adjoint then T is quasi-diagonal. If T is an unbounded
self-adjoint operator we can still say that 7T is quasi-diagonal (due
to the Weyl-von Neumann theorem).

This notion can be extended to a set of bounded operators.

When A is a C*-algebra, A is called quasi-diagonal if there is
a faithful representation 7 of A such that m(A) is quasi-diagonal.
Easy examples include AF algebras and commutative C*-algebras.

We extend this notion to flows in two ways.

17



Definition 3.9 Given a Hilbert space 'H, let A be a norm-
closed *-algebra of bounded operators on H and let U be a
unitary flow on 'H such that UyxU} € A fort € R and t —
UizU;" is norm-continuous for any x € A.

We call (A,U) to be quasi-diagonal if for any finite set F

of A, any finite set w of H, and € > 0 there is a finite-rank
projection & on 'H such that

I, || < ellz]l, =z eF,
I(1 = E)Il < €lléll, €€w,

and
IE,U|l <€ te-1,1].

We call (A,U) to be pseudo-diagonal if for any finite set
F of A, any finite set w of H, and € > 0 there is a finite-rank
projection B on 'H and a unitary flow V on E'H such that

IE, z]|| < eljzl|, =€ F,
11— EX[l < €liéll, € €w,

and
|EUxxU E — V,ExEVY|| < €||z||, =€ F, te[-1,1].

Let A be a C*-algebra and let a be a flow on A. We call o
to be quasi-diagonal (resp. pseudo-diagonal) if (A, a) has
a covariant representation (w,U) on a Hilbert space H,, with
7 faithful and non-degenerate, such that (w(A),U) is quasi-
diagonal (resp. pseudo-diagonal).

18



Note that o being quasi-diagonal or pseudo-diagonal is much
stronger than A x, R being diagonal.

The condition ||[E,Us]|| < €, t € [—1,1] in the definition of
quasi-diagonality can be replaced by

IE, H]|| <,

where H is the self-adjoint generator of U: Uy = '

Remark 3.10 If o is quasi-diagonal (resp. pseudo-diagonal)
and B is an a-invariant C*-subalgebra of A, then a|B is quasi-
diagonal (resp. pseudo-diagonal).

This kind of property is not at all clear for approzimately
inner flows.

The following three theorems can be proved by adopting Voiculescu’s
arguments to the present situation.
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Theorem 3.11 Let o be a flow on a C*-algebra A. Then the
following conditions are equivalent:

1. « is quasi-diagonal.

2. For any finite subset F of A and € > 0 there is a finite-

dimensional C*-algebra B, a flow  on B, and a CP map
¢ of A into B such that

18l <1, llg(@)]l = (1 —e)ll=|,
lo(x)o(y) — d(zy)|| < ellzlllyll, =,y €F,

and

18 — daus|| <€, te[-1,1].

3. For any finite subset F of A and € > 0 there 1s a covariant
representation (m,U) as well as a finite-rank projection E
on H, such that

|Em(z)E|| = [|z]| — €,
B, m(@)]]| < ellzll, ze€F,

and

B, Ul <& tel-11]

20



Theorem 3.12 Let a be a flow on a C*-algebra A. Then the
following conditions are equivalent:

1.
2.

a 18 pseudo-diagonal.

For any finite subset F of A and € > 0 there is a finite-
dimensional C*-algebra B, a flow 8 on B, and a CP map
¢ of A into B such that

loll <1, lig(@)ll = (1 = e)ll=]],
|8(z)o(y) — d(zy)l| < ellllllyll, =,y € F,

and
18:p(x) — pau(z)|| < €llzl|, z€F, te[-1,1].

For any finite subset F of A and e > 0 there is a covariant
representation (m,U), a finite-rank projection E on Hi,
and a unitary flow V on E'H, such that

|Ex(z)E| = (1= ¢)llz]],
1B, w(2)]l| < ellzll, e F,

and

|EUn(z)Uf E-VE7(z)EV|| < €llz||, z € F, t €[-1,1].
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Theorem 3.13 Let a be a quasi-diagonal (resp. pseudo-diagonal)
flow on A. Then for any covariant representation (p, V) of A
such that p x V is a faithful representation of A xo, R and
Ran(p x V) N K(H,) = {0}, (p(A),V) is quasi-diagonal (Tesp.
pseudo-diagonal).

This follows by slightly modifying the proof of Voiculescu’s Weyl-
von Neumann theorem. It is not too difficult to handle one un-
bounded self-adjoint operator associated with A X, R in addition
to itself.
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Definition 3.14 Let A be a UHF algebra and o a flow o on A.
We call « o« UHF flow if there is a sequence (k,) of integers
such that k, > 2 and

co
A= Q) M;,
n=1

and
oy = ® Ad Bithn?
where h, € (Mg, )sa-

Going back to the quantum spin flows, if the interaction ® sat-
isfies that ®(X) = 0 whenever | X| > 1 then a® is a UHF flow.
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Definition 3.15 Let A be an AF algebra and o a flow on A.
We call « an AF flow if there is an increasing sequence (Ay) of
finite-dimensional C*-subalgebras of A with dense union such
that

ai(An) = An.

We call o an approximate AF flow if there is an in-
creasing sequence (Ay) of finite-dimensional C*-subalgebras of
A with dense union such that

sup dist(Ay, ay(An)) — 0
te[0,1]

as n — Co

5

When B and C are subsets of A and § > 0 we write B C C
if for any z € B there is y € C such that ||z — y|| < d[|z||. The
distance of B and C' is defined by

dist(B,C) =inf{6 > 0| B C C, C C B}.

Proposition 3.16 Let o be a flow on an AF algebra. Then
a is an approzimate AF flow if and only if it is a cocycle
perturbation of an AF flow.

The ”if’ part is almost obvious. The difficult part is the "only
if’: the proof I have is rather roundabout.
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In the case of quantum spin flows if the interaction is of finite
range and -

®(A) € Q) Dn=ArND
neA
where D,, is the diagonal matrices of A, = Ms and D is the C*-
subalgebra generated by all D,,, then o® is an AF flow.

(Suppose that ®(X) = 0 if the diameter of X is greater than
K > 0. Let A be a finite subset of Z¢. The C*-subalgebra gener-
ated by A and D,, with n within the K-neighborhood of A is left
invariant under o®.)

- Remark 3.17 The AF flows already form a rich class of flows.
We do not know to this day if there is a quantum spin flow
which is not an approximate AF flow.
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Proposition 3.18 Ifa is an AF flow then a is quasi-diagonal.

Proof. We choose a maximal abelian C*-subalgebra Dy, of A, N
A! | such that ay|D,, = id and let D be the C*-subalgebra gen-
erated by all D,, which is a maximal abelian C*-subalgebra of A.
Let ¢ be a character of D which extends to a pure a-invariant
state of A.

Let (g, U?) be the GNS representation;

Uf%(:c)ﬂqg, = ?qu,at(x)qu, z € A.
Let E,, be the finite-rank projection onto m4(An)2s. Then
[En: ﬂqf)(x)] - 0: T e Ana

and
[E,,U?] = 0.

In the case of quantum spin flows if ®(X) € @),,cx Dn Without
the condition of finite range, we still have the above conclusion. In

this case a® may not be an AF flow; but of more general kind of
AF flow.
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Proposition 3.19 If « is an approximately inner flow on a
quasi-diagonal C*-algebra then a is pseudo-diagonal.

Proof. 'We suppose that A acts non-degenerately on a Hilbert
‘space H such that A is a quasi-diagonal set of B(H).

Let F be a finite subset of A and € > 0. By the assumption
there is an h = h* € A such that ||az(z) — Ad e®?(z)|| < €/3||z|
for £ € F and t € [—1,1]. There is a finite-rank projection E
on H such that |EzE| > (1 — €)||z|| and ||[E, z]|| < €||z]|| for
r € F,and ||[E, h]|| < €/3. Since ||Ee™"E — e*F*ER|| < ¢/3 for
t € [—1,1], it follows that

|Eoy(z)E — Ad " (ExE)| < ||z, = € F.

Note also that ||ExEyE — ExzyFE|| < €||z||||y| for z,y € F. By
setting B = B(EH), B; = Ad e and ¢(x) = ExE, we obtain
the desired objects for (F,e).

Proposition 3.20 Let A denote the gauge-invariant CAR al-
gebra. Then any flow on A is quasi-diagonal.

Proof. There is a decreasing sequence (I,) of ideals in A such that
AR 2 C, Ii /I, 2 K for nl; and (] I, ={0F.

27



Proposition 3.21 Let Q) be a compact Hausdorff space and o

a flow of homeomorphisms of ). If & has no fized points then
the induced flow on C(f)) is not pseudo-diagonal.

Proof. The proof uses the existence of KMS states which follow
from pseudo-diagonality.

Proposition 3.22 Let D denote the unit disk {z € C | |z| <

1} and define a flow o by ay(z) = €z. Then the induced flow
on C(D) is quasi-diagonal.

When the C*-algebra is quasi-diagonal the relations among the

four notions are

Asymptotically inner = Approximately inner

¢
Quasi — diagonal = Pseudo — diagonal
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4 Cocycles

If o is a flow on A, then « extends to a one-parameter automor-
phism group of M(A) such that ¢ — oy(z) is continuous in the
strict topology for z € M(A). We denote such an extension by
the same symbol a.

Definition 4.1 Let o be a flow on a C*-algebra A. We call u
an a-cocycle (in M(A)) if u is a continuous function of R
into the unitary group of M(A) such that usos(us) = Usyt, S,t €
R. Moreover if u; € A+ C1 then we call u an a-cocycle in A.

Let w be a unitary. Then ¢ — way(w*) is an a-cocycle, called a
coboundary. More generally if u is an a-cocycle and w is a unitary,
‘then

t— wu;at(w*)
is an a-cocycle.
Let h € A, and define

Ut = Z ?:n/ atl(h)atz (h) R @5 (h)dtl aliierie dtn,
n=>0 "

where if t > 0
an{(tl:“°atn)|05t15t25“'§tn§t}

and if ¢ < 0 similarly. Then wu; is differentiable and satisfies
du/dt = usiay(h). Then one deduces that u is an a-cocyle in
A.

If u is an a-cocycle then we denote by Adua the flow ¢ — Adwa
on A. If u is differentiable and ith = du,/dt|;—g then Adua is
generated by 0, + ad ih.
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Proposition 4.2 Suppose that A is unital and let u be an a-
cocycle. Then for any € > 0 there is an analytic cocycle v and
a unitary w such that |jw — 1|| < € and

ur = woroy(w®).

Proof. We define a flow v on A ® M, by

- ($11 xlz) - ( Oft(ﬁﬂll) Cft(Ilz)uf )
To1 Too upu(T21) wpu(Toz)uy
Note that y;(ez1) = usea1. There is a y-analytic element = such
that £ = expre;; and ||z — exn| = 0. We may replace z by

z(x*z)™!. Let £ = w ® ey where w € U(A). Then t — woy(w)
is analytic. Thus v; = w*w;y(w) is an analytic a-cocycle.

Proposition 4.3 Suppose that A is unital and let u be an a-
cocycle. Then for any € > 0 there is an entire non-unitary
cocycle v and an invertible element w such that ||w — 1|| < €
and A

uy = wogag(w™r).

Proof. In the above proof if we drop the condition that w € U(A)
then we can assume that ¢t — 7(x) = uyoy(w) & ey is entire for
T = w ® ey. Then vy = wluzay(w) satisfies

vsas(vy) = W usas(w)as (W o (W) = Vs

30



Theorem 4.4 Let u be an a-cocycle in M(A), p € A, and
e > 0. Then there is an a-cocycle v in A such that

|(us — v)p|| <€, t€]-1,1].

Proof. If there is an e € A, such that ep = p, eusp = wsp,
da(€) = 0, and t — euye is differentiable then we set

d(euse)/dt|i—g = ih.
Since h* = h we define an a-cocycle v by
dvy/dt = vioy(th)

with vg = 1. Then it would follow that u;p ~ v;p. The main
problem is to find such an e (for an a-cocycle close to u).
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Proposition 4.5 The four properties, approzimate innerness,
asymptotic innerness, pseudo-diagonality, quasi-diagonality, are
invariant under cocycle perturbation.

Proposition 4.6 Let B be an a-invariant hereditary C*-subalgebra
of A. Then the following hold:

1. If o is approzimately inner then a|B 1is approximately in-
ner.

2. If B generates A as an ideal then the converse holds.

The above statements holds for pseudo-diagonality and quast-
diagonality (instead of approzimate innerness ).
If each of A and B have a strictly positive element, the above

statements hold for asymptotical innerness (instead of approz-
imate inmerness).
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5 KMS states

Let A be a unital C*-algebra and « a flow on A.

Definition 5.1 Let ¢ € R. A state w on A is called an a-
KMS state at ¢ if way = w fort € R and w(zy) = w(yi(z))
for all a-entire x,y € A.

In the above definition if ¢ # 0 then the invariance way = w
follows from the other part of the condition. If ¢ = 0 then the
KMS state is an a-invariant tracial state.

Proposition 5.2 A state w on A is a KMS state at ¢ > 0
if and only if for any z,y € A there is a bounded continuous
function f on C. = {2z € C | 0 < (z) < ¢} such that f is
holomorphic in the interior of C. and

f(t) = w(ya(z)), t€R,

and
f(t+ic) =w(a(z)y), tE€R.
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Definition 5.3 A state w is called a a-ground state (resp.
a-ceiling state) if

—iw(z*8(x)) > 0 (resp. < 0)
forz € D(6,).

In the above the invariance way = w follows automatically. (If
t = z* € D(4,) then wéy(2?) = w(da(z)z) + w(xba(z)) = 0.)

If w is a ground state then by defining a unitary flow U on the
GNS representation space associated with w by

Ui (2) = mo0u(z)y, = € A,

we derive that H > 0, where H is the self-adjoint generator of U,
from —iw(z*04(z)) = (T (2)Qy, Hm,(2)D)-

Proposition 5.4 A state w is a ground state if and only if
for any z,y € A there is a bounded continuous function f on
Cex = {2z € C | S(z) > 0} such that f is holomorphic in the
interior of Co and

f(t) =w(zai(y)), tE€R.
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If A= M, then any flow a on A is given as oy = Ad e for
some h € Ag,. For ¢ € R define a state w. on A by

we(z) = Tr(ze™ ) /Tr(e™), z € A,

where Tr is the trace on A = M,,.
Then w, is a unique a-KMS state at c. This follows by
computation:

we(Yaic(z)) = CTr(ye " zee™") = CTr(zye™") = we(zy)

where C' = Tr(e™*)71. If w is a KMS state, then letting p € A
with w(:) = Tr(p:) we compute:

Tr(pzy) = Tr(pye™Mze™) = Tr(ezeTpy), z,y € A,

which entails e“?p = ¢l for some ¢ > 0.
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Proposition 5.5 If a is a UHF flow then it has a unique KMS
state for all c € R.

Proof. If oy = @ Ade™ on A = ® Mj, , then the KMS state w
at c 1s obtained as the infinite tensor product

® Tr(- ") /Tr(e).

Let @ be an AF flow on a unital AF algebra A and let (A,) be
an increasing sequence of finite-dimensional C*-subalgebras of A
with dense union such that a;(A,) = A,. Let Z, = A, N Al and
Zn = C*. Let w be a KMS state of A. Then w| Ay, is determined
by w|Z, which corresponds to a point in the k, — 1 simplex A,,.
Denoting the map A,,; — A, by S, (giving @|Zp 11 — ¢|Z, with
¢ a KMS state on A,+1) we conclude that the set of KMS states
of A is given as the projective limit of

A B B P P o |
Thus the KMS states of an AF flow are describable in a sense.

Remark 5.6 If a is a Rohlin flow on a unital C*-algebra, then
a has no KMS states at non-zero c. (If u is a unitary such that
ay(u) = €"Pu and w is a KMS state at c, then 1 = w(uu*) =
w(u*oye(u)) =~ e77¢.)

36



Proposition 5.7 Suppose that « is a pseudo-diagonal flow on
a unital C*-algebra A. Then a has a KMS state for all inverse
temperatures including +o0o.

Proof. Let F be a finite subset F of A and € > 0. For each (F,e€)
we have a flow 3 on a finite-dimensional C*-algebra B and a CP
map ¢ of A into B such that

¢(1) =1, llg@@)l = (1~ €)=l
16(2)¢(v) — d(zy)ll < ellzllllyll, =,y e F

and

18:p(2) — pou(z)|| < elzll, =€ F, te[-1,1].
Here we have replaced the condition ||¢|| < 1 by ¢(1) = 1 since A
1S unital.

There is a self-adjoint h € B such that 8, = Adeit". We fix
7 € R and define a state ¢ on B by

P(Q) = Tr(e™"Q)/Tr(e™™),
where Tr is a trace on B. Then we know that @ 1s a KMS state
on B with respect to 3 at inverse temperature .

We set a state f(re on A by ¢, where ¢ and ¢ depend on
(F,€). Let f be a weak*limit point of J(F,), Where the set X
of (F,€) is a directed set in an obvious way. We fix a Banach
limit ¢ on L*°(X) such that f(z) is the ¢ limit of (F,€) —
f(re(z) for z € A. Note that f(za(y)) is the + limit of (F,€) —
¢(d(zay(y))), which is close to w(o(x)Bid(y)) around oo. Thus
one can conclude that f is a KMS state at .

A similar proof works for a KMS state for v = %00 (or a ground
state and ceiling state).
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Lemma 5.8 Let u be an a-cocycle and eIpTess U as u; =
wv;o(w™t) where v is an entire non- umtary a-cocycle. For
a state w of A and c € R define a state ' on A by |

(g — w(w™taww;,)
w ( ) N2 w(vic)

If w is a KMS state at ¢ with respect to a then ' is a KMS
state at ¢ with respect to Ad ua.

Proof. Note w(vi.) > 0. This follows formally since
W(vie) = w(w  ww;) = wW(ww;ctic(w)) = w(ug),

which is positive because t — w(u,) is positive-definite. This is
because

w(uti—tj) = (,(_)('u,tz,(]ftz. ('U._tj)) - w'(a-——ti (uti)a—*tj (u;;.))
The numerator for a = z*z is non-negative because
w(w_lx*xwvic) — w(x*xuic) T w(xuicaw(m*))

and t — w(zu;oy(x*)) is positive-definite.
~ Let o/ = Adua. Formally w(v;.)w'(xy) equals

w(w ™ zywy;,) = W(Ywvicose(w™ ) aue(z)).
Since &, (2) = wo;coue(w ™) aio(z) aic(w Ju'w™1, this equals
wW(ya(T)woiei(w™)) = w(w™ Yo (T)wuy)

which is w'(yal,(z)).
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Definition 5.9 Let o be a flow on a unital C*-algebra. We
define K*CR x A* by

K® = {(c,w) | w is a KMS functional at c},

where KMS functional means KMS state multiplied by a non-
negatwe constant. Then K is a closed subset of R x A* and

each section at ¢ € R is a lattice. We call K@ the KMS field
for a.

Proposition 5.10 Letu be an a-cocycle. Then the KMS fields
for a and for Adua are isomorphic.

Proof. When u; = wua(w™?) as in the previous lemma, the
desired map is given by

—1

w— w(w™ - wog).
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6 Ideals of A x, R

Let o be a flow on a unital C*-algebra. The dual flow & is a Aow
on the crossed product A x, R. By the Takesaki-Takai duality

(A X4 R, &) is a complete invariant for the cocycle perturbations
of a.

If & has a ground state then it induces a covariant representation
(7,0 = e ) such that H > 0. Then the representation T x U
of the crossed product A x, R is not faithful. Since

(7 x UYA(f)) = / et f(t)dt = f(—H),

the kernel contains A(f), f € K*(R) with supp(f) C (0, oo). If
I is the ideal of A X, R generated by such A(f), then t — @(I)
1s decreasing and I satisfies

Ja:() =A%, R
t

and

m (1) = {0}.

If a has a ceiling state then A x, R has an ideal J such that
t — ay(J) is increasing from {0} to 4 x, R.
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For A > 0 and an a-invariant hereditary C*-subalgebra B of A
we denote by B) the C*-subalgebra of B generated by B(—)\, A),
where « also denotes the restriction of & to B. Note that A\ — B A
Is increasing, where B*(U) is the closure of {z € B | Sp,(z) c U}
for an open set U.

Definition 6.1 We say that a satisfies the no energy gap
condition if the following holds: By = B for any A > 0 and
for any a-invariant hereditary C*-subalgebra B of A.

Let o be a UHF flow on A = @), M; of the form

eit/\no
«=® (% 1)

n

If An = 0and Y |\,| = oo then « satisfies the no energy gap
condition.

Proposition 6.2 Suppose that A\, — 0 and 3 |M\/? = oo in
the above description of a. If B is a flow on B then the flow
a® [ on A® B satisfies the no energy gap condition.
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Theorem 6.3 Let o be a flow on a C*-algebra A. Suppose

that for each t # 0 A is oy-simple and T(oy) = T. Then the
following conditions are equivalent:

1. « satisfies the no energy gap condition.
2. All primitive ideals of A x, R are monotone under &.

3. For any B € H*(A) and for any inner perturbation of
B of a|B, By, is independent of A > 0 and B(_0) 15
independent of A > 0, where

By = BA(V)*BBA(V)
for any open subset V of R.

 Moreover if the above conditions are satisfied, then Rc(a) = R
(or A x4 R is prime).
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7 Traceson A x, R

Definition 7.1 Let B be a non-unital C*-algebra. A trace on
B is a function 7 : By — [0, 00| such that

1. T(fyx) = QT(‘T)! RS B-i-a Y R+;
2.17(x+y)=7(z)+7(y), z,y€ B,;
8. m(u*zu) =7(z), 2 € B, ueB.

We say that 7 is densely-defined if B, =4z € By | 7(z) <
oo} is dense in By and that T is lower semi-continuous if
{z € By | 7(z) < v} is closed for every v € R.,.

We call T minimal if for any z € B, \ B} and an approz-
imate identity (ei) in B for the ideal obtained as the closed
linear span of BT the net 'r(xl/zeiml/z) diverges to infinity.

Note that a lower semi-continuous densely-defined trace is
manimal.

Let I be an ideal of B and let ¢ be a lower semi-continuous
densely-defined trace on I. Then one defines ¢ : A, — [0, 0o] by
é(z) = sup ¢(z/2ex'/?) where e runs over {ee I ||| <1}
Then ¢ is a minimal lower semi-continuous trace on B.
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We impose the following condition on a:

Definition 7.2 We call o uniformly profound if for each
p € R there is a sequence (z,) in A such that [zall = 1,
[z, 9]l — 0 for y € A4,

SPa(Tn) C (p— 1/n,p+ 1/n),
and

T W bt =1,

The above condition on « is much stronger than profoundness
(and R¢(R) = R). If ¢ is a KMS state then the above condition
implies that m4(A)” is of type III.

For a sequence (A,) in R let a be the UHF flow on Moo given by
the infinite tensor product of Ad(e*** @ 1). Suppose that An — 0.

Then
Z )\i = 00

if and only if « is uniformly profound. The tensor product o ® 3
with any flow 3 is also uniformly profound.
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We denote by A x, R the crossed product of A by a. The
canonical unitary multiplier flow of A x,R,, denoted by \;, t € R,
satisfies that

)\ta = at(a)/\t, a € A.

Recall K'(R) = {f € LY(R) | supp(f) is compact}. For f €
K (R) we write A(f) = [ f(t)Adt.

Lemma 7.3 Suppose that A is unital and that o is uniformly
profound. Let T be a non-zero lower semi-continuous densely-
defined trace on A x, R such that the GNS representation
is factorial. Then there are c € R and C > 0 and a KMS state
w on A at ¢ such that

r(aA(f)) = Cu(a) / f(@)edg

for f € K'(R). Moreover it follows that T6p = e P1 for
p € R.

Proof. Since 7 is well-defined on A(f), f € K'(R), there is a
Radon measure p on R such that

T(A(f)) = /f(Q)dﬂ(Q)s fe K (R)

Let (z,,) be a sequence in A for p € R as in the definition of
uniform profoundness. Since [Nz, — ez, )| — 0, it follows
that for any f € K'(R)

H’\(f)xn - mn’\(pr)H — 0,

where xp(t) = €. Let 2 = A(f)eaziA(f)—2nA (xof)A (oS )2
which converges to zero in norm. If g € K '(R) is such that
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g > 0 and g is 1 on a neighborhood of supp( jg)1 it follows that
A(9)zn = 2. Since 7(A\(g)) < oo, we conclude that T(z,) —
0, e, TNZaZIAF)") = T\ &2nA(xpf)) —> 0. Since
mr is factorial and (z,z}) and (z:2,) approximately commute
with all elements of A x, R, we may suppose that Tr(Tnxl) —
al and 7 (z;z,) — cy1 weakly. Thus we can conclude that
at(AFA)) = arAf) Mxpf)). Since ¢; + ¢y > 1/2,
we deduce that ¢; > 0. (If ¢; = 0 then TAXpf)* A(xpf)) = 0
for all f € K'(R), ie, 7 = 0.) Set a, = c;/cy; then it fol-
lows that du(- + p) = a,du. Since ap is continuous in p and
Aply = Apyq for p,g € R one can conclude that a, = e ? for
some ¢ € R. Since e“du(q) is translation-invariant, one can con-
clude that du(g) = Ce™“dy.

Let f € K'(R) be such that A(f) > 0 and define a state wy
on A by w(a) = 7(aA(f))/7(A(f)). Using the sequence (z,,) given
above, we conclude that

r(@naNf) @
at(\(f)) i

But the left hand side also converges to Wy, (a) as follows by com-
puting 7(z;aA(f)z,). Thus one can conclude that w f = Wy, for
all p € R. In this way argue that wy 1s independent of f and then
that it is a KMS state at c.
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Remark 7.4 We need some condition on o to obtain the con-
clusion in the above lemma. If oy = id then A x, R =
A ® Cy(R) and it has many tracial states if A has. If o is
the UHF flow on A = My~ determined by a sequence (A,)
such that A, — 0, > |M\| = 00, and Y A2 < oo, then a is
profound and A X, R is prime and has tracial states.

Suppose that there is a lower semi-continuous densely-defined
trace 7, for each ¢ > 0 such that

r(A()) = / e~f(g)dq.

Then by taking the limit ¢ — oo we obtain a trace 7 : (A X4
R); — [0,00] such that 7(A(f)) = 0 for positive f € K'(R)
with suppf C (0,00) and 7(A(f)) = oo for positive f € K1 (R)
with suppf C (—o0,0). Hence {z € (A xqR); | 7(z) =0} is a
mnon-zero hereditary cone invariant under the inner automorphisms.
Thus the linear span is a proper ideal. One can conclude that it
cannot be dense and its closure is also a proper ideal. This is of
course well-known from the existence of ground states.

Lemma 7.5 Suppose that A is simple and unital and suppose
that a is uniformly profound. Then any minimal lower semi-
continuous trace on A X, R is densely-defined.

47



Let T(A x4 R) denote the set of lower semi-continuous densely-
defined traces on A x, R. -

Since the Pedersen ideal P is the smallest dense ideal of A x R,
7 18 well-defined on P for all 7 € T = T(A x, R). Since 7 is
determined by 7| P we may regard T as a convex cone. We equip
T’ with the topology determined by 7 7(x), * € P, which is

equivalent to the one determined by 7 — 7(aX(g)), a € A, g €
K'(R).

Proposition 7.6 Leta be a uniformly profound flow on a uni-
tal C*-algebra A and suppose that there is one and only one
KMS state with respect to o at each ¢ € R. Then the convez
cone T'(A x4 R) is isomorphic to the conver cone M of finite
measures p on R satisfying [ e P*du(s) < oo for all p € R
with the topology defined by p— [ e Pdu(s), p € R.
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Problems

- When o is a flow on an AF algebra (or a UHF algebra) clar-
ify the relations among the four conditions on o; asymptoti-
cally inner, approximately inner, quasi-diagonal, and pseudo-
diagonal.

. Give a necessary and sufficient condition for a quantum spin
flow to be an approximate AF flow.

. Probably there are many flows a on A = My~ such that
T(Ax4R) = M and the primitive ideal space is {0}JURUR
(where one of R represents an increasing ideal under & the
other a decreasing). Are there many A x, R?

. Under the previous situation if there is another flow B which
behaves in the same way as & on the primitive ideals, is 3 a
cocycle perturbation of &?

. Under the previous situation if there is a flow B which in-
creases one primitive ideal and decreases anther, how closely
is 3 related to &?
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It a is a flow on the UHF algebra Moo commuting with the
gauge action vy of T, can we conclude that « is quasi-diagonal
or approximately inner? Here v is given by

7. = R) Ad (g ?)

. For any € > 0 is there a § > 0 satisfying the following condi-
tion? If ovis a flow on a unital C*-algebra A such that A > B 3
14 and B & M,, for some n and it supyeg y) dist(My, o (M,,)) <
0 then there is an a-cocycle u such that Ad wou(M,) = M,
and supyepg q) [lus — 1] < e.

. Let a be a flow on a Cuntz algebra A. Prove that o has the
Rohlin property if A x, R is purely infinite.

. Prove that Rohlin flows on the Cuntz algebra are cocycle con-
jugate.
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